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Purpose. The purpose of this study was to evaluate the ability of the
dispersion model to describe pharmacokinetic-pharmacodynamic
data containing contributions from signal transduction cascades.
Methods. The partial differential equations and appropriate bound-
ary conditions describing the dispersion model for signal transduction
were obtained. Explicit analytical solutions to the dispersion equation
were not available, and a numerical approach was necessary. Solu-
tions were obtained by numerical inversion of the output Laplace
transform. Generalized least square fitting was used to obtain param-
eter estimates for a variety of experimental data sets.
Results. The parameters of the dispersion model estimate the relative
roles of diffusion, convection, and chemical reaction in signal trans-
duction. The model is capable of describing messenger RNA and
protein expression kinetics induced by drug action.
Conclusions. The dispersion model may find potential applications in
pharmacokinetic-pharmacodynamic models involving delayed drug
effects mediated by transcriptional changes.
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INTRODUCTION

The tanks-in-series and gamma distribution models have
been used to model signal transduction and transfer delays in
a variety of systems ranging from calcium ion-mediated sig-
naling in neutrophils (1), platelet dynamics in idiopathic
thrombocytic purpura, and methotrexate pharmacokinetics in
the liver (2,3). The transit compartment model has been
coupled with traditional compartmental pharmacokinetic/
pharmacodynamic modeling elements to describe the dynam-
ics of gene expression events induced by corticosteroid treat-
ment (4).

The tanks-in-series model assumes a series of well-stirred
compartments with identical residence times (Model A, Fig.
1). Mathematically, the bolus or impulse response of the
tanks-in-series model is an Erlang distribution, a special case
of the Gamma distribution with shape parameters restricted
to positive integer values. Statistically, the Erlang distribution
represents the time required to perform a sequence of N tasks
whose durations are identical, exponential probability distri-
butions. For this reason, the Erlang/Gamma distribution has
also been referred to as the stochastic model. In its simplest
form, the tanks-in-series compartment model has only two
parameters, N, the number of compartments, and �, the resi-
dence time in each compartment, that can be robustly deter-
mined by computer fitting programs. The model readily de-
scribes behaviors ranging from mono-exponential decay

(single well-stirred compartment) to the parallel tube model.
The transit compartment model (Model B, Fig. 1) represents
an extension of the tanks-in-series model in which one (or
more) of the signaling compartments incorporates nonlinear-
ity via a Hill exponent, h, and the input function is altered
through non-equilibrium receptor binding.

Here, we evaluate the dispersion model (Model C, Fig. 1)
as an alternative to the tanks-in-series, Gamma distribution,
and transit compartment models for modeling signal trans-
duction. Although dispersion models are widely used to mea-
sure deviations from ideal behavior in chemical reactors and
have been used to examine residence time distributions in the
liver and kidney, they have not been examined in the context
of modeling signal transduction cascades.

DERIVATIONS AND RESULTS

The Dispersion Model

The governing equations of the dispersion model are ob-
tained using a differential mass balance (Model C, Fig. 1) in
which the signal or signaling molecule is present at concen-
tration c, and is assumed to move at velocity u along the
spatial direction x while undergoing axial dispersion with
axial diffusion coefficient D, and elimination at a rate r. The
derivation is available elsewhere (5,6) and the one-dimen-
sional case is presented without extensive derivation as fol-
lows:
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The axial diffusional mechanism of signal transmission is rep-
resented by the first term, convective signal transmission by
the second term and signal elimination (or generation) is rep-
resented in the third term. In the case of a signaling molecule
eliminated via a first-order process with rate constant k:
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The spatial dimension z is rendered non-dimensional using
Z = z

L
, where L is the length scale the signal has to travel and

time is normalized using T = tu
L

= t
�
, where � is the apparent

mean residence time. The concentration c is normalized to a
nondimensional concentration C using the dose and volume
of distribution of the system.
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The nondimensional axial dispersion number DN = D
uL

, mea-
sures the rate of axial dispersion relative to the rate of con-
vective signal transfer and correspondingly, the nondimen-
sional number RN = kL

u
measures the rate of elimination rela-

tive to the rate of convective signal transfer.
We assumed closed boundary conditions that do not al-

1 Department of Pharmaceutical Sciences, 543 Cooke Hall, State Uni-
versity of New York at Buffalo, Buffalo, New York 14260-1200.

2 To whom correspondence should be addressed. (e-mail murali@
acsu.buffalo.edu)

Pharmaceutical Research, Vol. 19, No. 10, October 2002 (© 2002) Research Paper

15440724-8741/02/1000-1544/0 © 2002 Plenum Publishing Corporation



low signaling molecules to leave the system. The mathemati-
cal description of the closed boundary conditions for T � 0 is:

At Z = 0, C − DN

�C

�Z
= Cin and at Z = 1,

�C

�Z
� 0 (4)

For a bolus input, Cin can be represented by �(Z), the Dirac
delta function. These boundary conditions are reasonable ap-
proximations for the many signaling cascades initiated by li-
gand binding to cell surface receptors and whose effects are
mediated by the binding transcription factors to DNA. In the
remainder of the paper, the linear, non-dimensional form of
the dispersion model with closed boundary conditions is as-
sessed.

Analysis of Dispersion Model Behavior

The behavior of the dispersion model is reviewed in
(5,6). Notably, in the limit of DN = 0, the signal is convected
and behavior corresponding to the parallel tube model is ap-
proximated. For very large values of DN, the behavior corre-
sponds to a single well-mixed compartment.

Numerical Solutions for the Dispersion Model

Analytical solutions to the dispersion model are not
available. The transfer function method was used for solving
the dispersion model partial differential equation. The
Laplace transform L(s) of the bolus response of the disper-
sion model with closed boundary conditions is (5,6):

L�s� =
4a

��1 + a�2 e�a−1���2DN� − �1 − a�2 e−�a+1���2DN��
(5)

The s in the equation is the Laplace transform variable and
a = √1 + 4DN(s + RN). For a linear system, the product of
Laplace transforms of the bolus response and the pharmaco-
kinetic input represents the Laplace transform of the output.
If LInput(s) and LOutput(s) are the Laplace transforms of the
input and output, respectively, then:

LOutput�s� = LInput�s� � L�s� (6)

The numerical inverse of the Laplace transform was obtained
using a publicly available Fortran implementation of Weeks’
method (7–10).

Simulations and Modeling

Model identification and simulation were conducted us-
ing Adapt II, a software package for pharmacokinetic and
pharmacodynamic modeling on a Sun/Solaris cluster running
the Unix operating system. The generalized least squares al-
gorithm was used for parameter estimation. Figure 2A shows
the bolus response of the dispersion model 4 values of DN

with RN � 0. Figure 2B shows the effect of RN � 0.1 on the
bolus response.

Feasibility of Using the Dispersion Model for
Pharmacokinetic and Pharmacodynamic Modeling

We used published data from Xu et al. (11) to assess the
usefulness of the dispersion to describe in vivo gene-mediated
drug effects. These authors modeled experimental pharmaco-
kinetic and pharmacodynamic data for tyrosine aminotrans-
ferase (TAT) mRNA and protein induced by intravenous
administration of 50 mg/kg methylprednisolone in adrenalec-
tomized rats. The TAT mRNA and activity data in Fig. 2 of
Reference 11 were obtained by scanning and image analysis.

The bi-exponential pharmacokinetic estimates of meth-
ylprednisolone (CMP = 56.27e−9.88t + 14.49e−1.22t, where CMP

is the drug concentration in �g/mL) reported by Xu et al. (11)
were used as an input to a combination model, Model D in
Fig. 1. The model contained a dispersion element to describe
signal transduction and the Hargrove-Schmidt model to de-
scribe mRNA and protein dynamics (12,13). A ‘signal-to-
transcript’ conversion parameter, �, was used to linearly con-
vert the dimensionless output signal from the dispersion
model into a transcription rate for the Hargrove-Schmidt
model. Although the � term is placed at the end of the dis-
persion element in Fig. 1, it also subsumes the proportionality
constant that renders the input drug concentration nondimen-
sional for the dispersion element. Because the dispersion
model is linear, individual proportionality constants can be
combined without affecting the overall result. The dimension-
less reaction parameter, RN, was set to zero because prelimi-
nary system identification runs and the simulation experi-
ments in Fig. 2 also supported the possibility that RN had a
relatively small impact on the output of the dispersion model

Fig. 1. Models of the tanks-in-series or Gamma distribution (A),
transit compartment (B) and dispersion models (C and D). The gray
line in D indicates that information not mass is transferred from the
TAT mRNA to the TAT protein compartment. In A, N is the number
of compartments and � the residence time in each compartment. In B,
Drug is the free drug concentration, R is the free drug receptor con-
centration, DR is the concentration of the drug-receptor complex,
and k1 and k−1 are the rate constants for receptor binding and drug-
receptor complex dissociation, respectively. The M1, M2, and M3 are
concentrations of signaling intermediates, h is the Hill exponent and
the � is the mean residence time in each compartment. In Figure 1D,
kT, kM, and kP are rate constants for translation, mRNA degradation
and protein degradation, respectively, and � is the “signal to tran-
script” conversion parameter.
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over the parameter range of interest. The dispersion element
contained three fitted parameters, �, DN, and �; the Har-
grove-Schmidt model element contained three fitted param-
eters. The initial values for TAT mRNA and activity level
were set to the baseline levels in control animals. The param-
eter estimates and the associated coefficients of variation are
summarized in Table I. Figure 3 A and B, which overlays the
fitted curves from the dispersion model (Model D, Fig. 1) on
experimental data for TAT mRNA and activity, demonstrate

that the dispersion model is capable of representing the phar-
macodynamics of gene expression.

Comparison of Dispersion Model Behavior to the
Transit Compartment

We obtained simulated data from the transit compart-
ment (Model B, Fig. 1) for compartment M3 using the pa-
rameter values used by Sun and Jusko (first-order pharma-
cokinetics: first-order elimination rate constant �z � 1 h–1,
initial drug concentration � 104 units; pharmacodynamics:
receptor levels � 100 units, on-rate k1 � 0.1 units/h–1, off-
rate k–1 � 1 h–1; 4). The mean time in each of the transit
compartment was set to 1 h. The Hill-type power coefficient,
h, was set to either 1 or 1.2. The dispersion model (Model C,
Fig. 1) was then used to fit the simulated data from the transit
compartment model. The dispersion model contained three
parameters, �, DN and �, that were obtained from fitting with
the value of RN fixed at zero.

Figure 4 visually summarizes the results from fitting the
dispersion model to the simulated data from the transit com-
partment model for compartment M3 with h � 1 and 1.2.
Under these conditions, the best-fit dispersion model curves
were more peaked and had longer tails than the transit com-
partment model. However, these differences were relatively
modest and would probably be obscured by the experimental
error in many pharmacodynamic measurements. These pre-
liminary findings suggest that the dispersion model may also
be capable of parsimoniously describing the results of transit
compartment models.

Fig. 2. Simulations of the dispersion model for a bolus or impulse
input. A, Results for the 4 values of dimensionless dispersion number,
DN indicated. The dimensionless reaction number, RN, was set to
zero. The dashed lines are used with alternate lines for clarity. B,
Effect of the dimensionless reaction number, RN, on the output from
the dispersion model. The DN values examined are shown. The
dashed lines are for RN � 0.1 and the solid lines show the corre-
sponding results for RN � 0.

Table I. Parameter Estimates for TAT mRNA and Activity from the
Dispersion Model

Parameter Estimate CV%

DN 0.21 14
RN 0 Fixed
� (h) 5.60 8.3
� 0.305 39
kM hr−1 1.08 40
kT hr−1 1.40 39
kp hr−1 1.45 40
mRNA at t � 0, pmol/g 0.161 Fixed
Activity at t � 0, 	A331/min g 0.0694 Fixed

Fig. 3. The fit of the dispersion model combined with the Hargrove
Schmidt model to the tyrosine aminotransferase mRNA (in pmol/g)
and activity level data (Absorbance at 331 nm/min g) from Xu et al.
(11).
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DISCUSSION

In this report, it has been demonstrated that the disper-
sion model is capable of characterizing biologic signal trans-
duction. The model was assessed using simulations and pub-
lished in vivo pharmacokinetic and pharmacodynamic data.
The use of the dispersion model for describing signal trans-
duction cascades is novel although the formalism of the dis-
persion model itself is not: it has been widely used to describe
residence time distributions in chemical reactors, the liver and
the kidney. The results demonstrate that it provides succinct
mechanistic descriptors of the signal transduction process.

Although the dispersion model is mathematically more
demanding than the Gamma distribution, tanks-in-series and
transit compartment models, it is very parsimonious, param-
eter efficient and at its core, conceptually simple. The pro-
cesses described include signal dispersion, convective trans-
fer, and signal elimination. The dispersion model element
does not contain discrete compartmental structure and rep-
resents the processes of the transduction cascade with the
solution to a partial differential equation. Importantly, the
dispersion model identifies the overall characteristics of the
signaling process from the data instead of focusing on the
structure and relationships between the specific signaling el-
ements. However, in the limit of very large and very small DN

values, the characteristics of the dispersion model are identi-
cal to those of the tanks-in-series/Gamma distribution models
with a single and an infinite number of compartments, respec-
tively. The Gamma distribution and transit compartment
models, in contrast, assume or predict specific compartmental
structures for the signaling cascade. Given the known com-
plexity of many biologic signaling cascades and the increasing
rate at which additional information is emerging, the assign-
ment of compartmental structure to mechanistic elements in
the signaling cascade can be problematic with these models.

Unlike the transit and tank-in-series models, the disper-
sion model explicitly accounts for both spatial and temporal

dimensions in signal transduction. Although the time course
of the output of dispersion models can appear qualitatively
similar to those from the transit compartment model (e.g.,
Fig. 4), the “microscopic” fate of a signal in the two models in
distinct: in the dispersion model, a bolus signal is dissipated
incrementally by axial dispersion as it moves along the spatial
dimension and in the transit compartment and tanks-in-series
models, the bolus signal is mixed completely and instanta-
neously upon entry into the first compartment. Because the
dispersion model accounts for spatial dimension explicitly,
the results depend on the boundary conditions and here, the
closed-closed boundary conditions, which assume that signal-
ing molecules do not leave the system, were used. In the
chemical reactor engineering literature, a boundary condition
at a reactor entrance (or exit) is referred to as closed if the
dispersion coefficient is zero and open if the dispersion coef-
ficient is infinite (14). From the mechanistic standpoint, this
boundary condition-dependence suggests that signaling can
also be dependent on the specific conditions prevailing at the
regions where the signal is received (e.g., the cell surface) and
transduced (e.g., the interactions between transcription fac-
tors and promoter regions of DNA).

The distinctive quantitative differences between the
tanks-in-series and the dispersion model become most appar-
ent when the variances of the normalized residence time dis-
tributions (in residence time distribution analysis, it is con-
ventional to normalize time using the mean residence time
of a non-eliminated bolus input) are examined. For a disper-
sion model with closed boundary conditions (5), the change
in the variance of the normalized residence time of the sig-
nal, 	
2, where 
2

out and 
2
in are the normalized output and

input variances, respectively, is given by 	
2 � 
2
out − 
2

in �
2DN − 2D2

N (1 − e−1/DN). Thus, the variance of the normalized
residence time distribution increases with increased values of
the axial dispersion number DN. In contrast, the change in
the variance of the normalized residence distribution of the
signal upon passage through a tanks-in-series model is given
by 	
2 � N−1.

Although indirect effect models have also been used to
describe complex pharmacodynamic effects, the underlying
principles of indirect effect approaches and dispersion models
are not mutually exclusive. In general, indirect effect models
describe pharmacodynamics by delineating the non-linear
concentration-effect dependence of specific rate constants on
drug, metabolites or intermediate compartment concentra-
tions (15). Dispersion models on the other hand describe the
time courses of signal processing and represent an alternate
modeling element, i.e., they contain a qualitatively different
type of compartment.

In this report, the linear form of the dispersion equation
and the Laplace transform of its solution were used for mod-
eling. Additional nonlinearities, e.g., the Hill equation to ac-
count for saturable receptor binding and rate constants modu-
lated by indirect effects, are readily incorporated but the
Laplace transform method cannot be used and alternative
numerical approaches such as finite differences must be em-
ployed. Oliver et al. (16) and Hisaka and Sugiyama (17) have
reported results using the finite difference method for more
complex dispersion models such as physiologically based
whole-body models and multi-element dispersion models for
pharmacokinetic modeling of hepatic residence time distribu-
tions.

Fig. 4. The fit of the dispersion Model C to the transit compartment
Model B (Fig. 1). The transit compartment simulations (using param-
eter values shown in the text) for compartment M3 are shown in solid
lines and the best fit curves from the dispersion model are shown in
the dashed lines. The simulations differed in the values of the Hill
exponent, h, which was set to the values indicated.
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